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Abstract

The use of symbolic knowledge representation and reasoning
as a way to resolve the lack of transparency of machine learn-
ing classifiers is a research area that has lately gained a lot of
traction. In this work, we use knowledge graphs as the under-
lying framework providing the terminology for representing
explanations for the operation of a machine learning classifier
escaping the constraints of using the features of raw data as a
means to express the explanations, providing a promising so-
lution to the problem of the understandability of explanations.
In particular, given a description of the application domain of
the classifier in the form of a knowledge graph, we introduce
a novel theoretical framework for representing explanations
of its operation, in the form of query-based rules expressed in
the terminology of the knowledge graph. This allows for ex-
plaining opaque black-box classifiers, using terminology and
information that is independent of the features of the classifier
and its domain of application, leading to more understandable
explanations but also allowing the creation of different levels
of explanations according to the final end-user.

Introduction
Machine learning systems’ explanations need to be repre-
sented in a human-understandable form, employing the stan-
dard domain terminology and this is why symbolic AI sys-
tems play a key role in the eXplainable AI (XAI) field of
research (Murdoch et al. 2019; Guidotti et al. 2019; Arri-
eta et al. 2020). Of great importance in the area are the
so-called rule-based explanation methods. Many of them
rely on statistics to generate lists of if-then rules which
mimic the behaviour of a classifier (Yang, Rudin, and Seltzer
2017; Ming, Qu, and Bertini 2019), or extract rules in the
form of decision trees (Craven and Shavlik 1995; Con-
falonieri et al. 2019), while some methods make use of log-
ics (Lehmann, Bader, and Hitzler 2010; Sarker et al. 2017)
and extract rules in a form that it can be argued to be
the desirable form of explanations (Pedreschi et al. 2019).
Some recent methods utilize additional information about
the data (such as objects depicted in an image) (Ciravegna
et al. 2020), or external semantic information for the data
(Panigutti, Perotti, and Pedreschi 2020). The requirement
for expressing explanations in terms of domain knowledge
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with formal semantics has motivated the use of knowl-
edge graphs (KG) (Hogan et al. 2020) in XAI (Tiddi and
Schlobach 2022). Knowledge graphs allow for the devel-
opment of mutually agreed-upon terminology to describe a
domain in a human-understandable and computer-readable
manner. In this respect, knowledge graphs have emerged
as a promising complement or extension to machine learn-
ing approaches for explainability (Lecue 2019) like explain-
able recommender systems (Ai et al. 2018) that make use
of knowledge representation, explainable Natural Language
Processing pipelines (Silva, Freitas, and Handschuh 2019)
which utilize knowledge graphs such as WordNet, and com-
puter vision approaches, explainable by incorporating exter-
nal knowledge (Alirezaie et al. 2018).

Following this line of work, we approach the problem of
explaining the operation of opaque, black-box deep learning
classifiers as follows: a) using domain knowledge, we con-
struct a set of characteristic semantically-described items in
the form of a knowledge graph (which we call an explana-
tion dataset), b) we check the output of the unknown clas-
sifier against these items, and c) we describe the common
characteristics of class instances in a human-understandable
form (as if-then rules). For the latter, we propose a novel
framework for representing global, post hoc explanations
as first-order logic expressions produced through semantic
queries over the knowledge graph, covering interesting com-
mon properties of the class instances. In this way, the prob-
lem of extracting logical rules is approached as a seman-
tic query reverse engineering problem. Specifically, in order
to extract rules of the form “if an image depicts X then it
is classified as Y”, we acquire the set of items classified as
“Y” and then we reverse engineer a semantic query bound to
have this set of items as certain answers. The use of seman-
tic queries in our framework allows us to utilize the strong
theoretical and practical results in the area of semantic query
answering (Calvanese et al. 2007; Trivela et al. 2020). The
query reverse engineering problem has been studied in the
context of databases (Tran, Chan, and Parthasarathy 2014)
and more recently of SPARQL queries (Arenas, Diaz, and
Kostylev 2016). Recent studies also consider similar re-
verse engineering approaches in order to separate data or
define queries to describe them (Jung et al. 2020; Cima,
Croce, and Lenzerini 2021). Here, we use expressive knowl-
edge graphs, where the answers to queries are considered
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to be certain answers, whose computation involves reason-
ing. This approach through the semantic queries allows us
to produce explanations for complex problems that other
methods struggle with even simple cases, as we can also see
through our experiments (see for example the experiments
with CLEVR-Hans3 where our method respects the set na-
ture of the problem, while other methods fail to represent
properly the concept of sets).

Recent works have adopted a methodology akin to ours
for achieving explainability, leveraging knowledge graphs,
and framing the problem as a query reverse engineering
task, facilitated by heuristic algorithms (Liartis et al. 2021,
2023). Our work is also relative to other global explanation
methods, for instance, in the computer vision domain, global
explanations of classifiers typically have the form of con-
cept attribution or concept importance methods (Ghorbani
et al. 2019; Wu et al. 2020), which extract important con-
cepts (such as “black and white stripes”) and present them
as global explanations. Our proposed approach can be an
alternative to methods such as concept attribution, offering
more expressive explanations than concepts (e.g. including
relations), independence of data features, and structured rep-
resentation of terminology.

Our approach attempts to exceed two major drawbacks
that most existing explanation methods have. Concerning
the vocabulary they use, most approaches generate rules in
terms of the feature space of the black-box classifier. How-
ever, it is argued that when the feature space of the classifier
is sub-symbolic raw data, providing explanations in terms of
features might lead to unintuitive, or even misleading results
(Mittelstadt, Russell, and Wachter 2019). Through the pro-
posed explanation dataset that contains the semantic descrip-
tion of the raw data, we can control the vocabulary used for
the explanations, curating it so that the terminology is use-
ful, understandable, and intuitive to the end user. Another
major problem that is more rarely discussed in literature, is
that there is not a ”universal” explanation that fits all the end
users. There might exist multiple explanations for an event
because there might exist multiple causes, so we need to pro-
vide the right explanations to the right people. For this, we
will need to gain insights from the social sciences as dis-
cussed in (Miller 2019), with the following example from
(Hanson 1965) showing how the existence of multiple ex-
planations, raises the question of relevance. In a fatal car
accident ”consider how the cause of death might have been
set out by the physician as ‘multiple haemorrhage’, by the
barrister as ‘negligence on the part of the driver’, by the
carriage-builder as ‘a defect in the brakelock construction’,
by a civic planner as ‘the presence of tall shrubbery at that
turning’. None is more true than any of the others, but the
particular context of the question makes some explanations
more relevant than others.” Choosing the relevant explana-
tion for the end user can be vital for understandability and
trustworthiness. In the above example, the different explana-
tions are not parts of one explanation, we can imagine them
as explanations at different levels. XAI methods need to be
able to differentiate according to such different levels in or-
der to be able to provide relevant explanations. For exam-
ple, in the case of a medical assisting AI system, the doctor

that uses the system would expect completely different in-
formation regarding the operation of the model, compared
to the AI engineer that designed and implemented it. These
two end-user groups require different levels of explanations
and mixing information from different levels may prove to
be misleading and non-understandable. The proposed expla-
nation dataset allows for the selection not only of the ter-
minology used in the explanations but also the appropriate
information so that the produced explanations are relevant
according to the end users.

Our approach allows us to produce global explanations
for classifiers in any domain, as long as there are available
semantic descriptions of the data. This is crucial for our
method since the quality of the explanations heavily depends
on this semantic description. The use of enriched data to ex-
plain deep learning models is an approach that is gaining
more and more ground on the area, because there has been
much controversy over black-box explanation methods that
utilize only raw data to mimic the behaviour of a classifier
(Rudin 2018), claiming that if the mime (explainer) is actu-
ally good, we should get rid of the opaque model and use
the mime instead, so there is no point on creating mime ex-
plainers that utilize the same raw data as the model under
investigation does, because they are either not good enough,
or the model under investigation is redundant. We consider
our method to be a form of explanation and we call it that
way in order to be compatible with the existing literature,
but as suggested in (Rudin 2018), a more appropriate and
more descriptive title would be “summary of predictions”
or “summary statistics”, since our method is independent of
the classifier features, and the explanations are produced by
summarizing the predictions of the classifier or alternatively
by a statistical analysis of the output of the model.

The rest of the paper is structured as follows: First, we
introduce the background material and notation. Next, we
describe the proposed theoretical framework for rule-based
explanations in terms of knowledge. Then we discuss our ap-
proach to the problem as a query reverse engineering task.
After that, we present the experiments including a compara-
tive evaluation. We discuss the merits of providing explana-
tions in terms of knowledge, we show that our approach per-
forms similarly with state-of-the-art rule-based explainers in
settings where the classifier is feature-based while showing a
clear improvement in more realistic settings of deep learning
classifiers (with raw data like images as input), especially in
the presence of expressive knowledge. Finally, we summa-
rize our main contributions and propose directions for future
research.

Background
Description Logics The framework is described using the
formalism of Description Logics (Baader et al. 2003), al-
lowing for explanations that utilize expressive knowledge,
and reasoning. Specifically, let V = ⟨CN,RN, IN⟩ be a vo-
cabulary, where CN, RN, IN are mutually disjoint finite sets
of concept, role and individual names, respectively. For ex-
ample, a concept name might be Dog, an individual name
could be the name of a specific dog, for example snoopy 42,
and a role name could represent a specific relation, such



Figure 1: Explainer in operation

as hasParent. Let also T and A be a terminology (TBox)
and an assertional database (ABox), respectively, over V .
The ABox contains assertions of the form C(a), or r(a, b),
C ∈ CN, a, b ∈ IN, r ∈ RN, for example it might contain
the assertion Dog(snoopy 42), indicating that snoopy 42 is
a dog. The TBox contains terminological axioms that use
constructors of the specific description logics dialect, and el-
ements of V . For example, a TBox might contain the axiom
Dog ⊑ Mammal, indicating that all dogs are mammals, and
Dog ⊑ ∃hasParent.Dog, indicating that all dogs have a par-
ent that is itself a dog. The pair K = ⟨T ,A⟩ is a (DL) knowl-
edge base (KB). The semantics of KBs are defined in the
standard model theoretical way using interpretations. Given
a non-empty domain ∆, an interpretation I = (∆I , ·I) as-
signs a set CI ⊆ ∆I to each C ∈ CN, a set rI ⊆ ∆I ×∆I

to each r ∈ RN, and an aI ∈ ∆ to each a ∈ IN. I is a model
of a KB K iff it satisfies all assertions in A and all axioms in
T .

Conjunctive Queries In this paper, we focus on sin-
gle answer variable conjunctive queries. Given a vo-
cabulary V , such a query is an expression q(x) =
{x|∃y1 . . . ∃yk(c1 ∧ · · · ∧ cn)}, where x is the answer vari-
able, yi are variables, and each ci is an atom C(u) or r(u, v),
where C ∈ CN, r ∈ RN, and u, v are variables. A query q2
subsumes a query q1 (we write q1 ≤S q2) iff there is a sub-
stitution θ s.t. q2θ ⊆ q1. If q1, q2 are mutually subsumed,
they are syntactically equivalent. Given a KB K, an individ-
ual a is a certain answer for a query q over K, if in every
model I of K, there is a match π for q such that π(x) = aI .
We denote the set of certain answers (answer set) to q by
cert(q,K). For example, the query q(x) = Mammal(x) will
have as certain answers all individuals that are Mammals
(according to K) so in our case, cert(q,K) = snoopy 42.

Rules A (definite Horn) rule is a First Order Logic (FOL)
expression of the form ∀x1 . . . ∀xn (c1, . . . , cn ⇒ c0), usu-
ally written as c1, . . . , cn → c0, where the cis are atoms
and xi all appearing variables. In a rule over a vocabulary V ,
each ci is either C(u) or r(u, v), where C ∈ CN, r ∈ RN.

Classifiers A classifier is viewed as a function F : D → C,
where D is a domain of item feature data (e.g. images, audio,
text), and C a set of classes (e.g. Dog, Cat).

Rule-based Global Explanations
Our approach to the extraction of rule-based global expla-
nations is shown in Fig. 1. The explainer takes as input the
output of an unknown classifier to specific items (the exem-
plar data) and a class C from the user and computes ex-
planation rules for C, in the form of definite Horn rules.
The explanation rules are expressed using a standard vocab-
ulary (e.g. terms from domain ontologies), which should be
understandable and useful to the end-user. To compute the
explanation rules, the explainer has access also to semantic
data descriptions associated with the exemplar data items,
expressed in the same vocabulary. The exemplar data, which
are the items fed to the unknown classifier, and their asso-
ciated semantic data descriptions comprise an explanation
dataset.

In this paper, we consider semantic data descriptions that
are expressed as DL knowledge bases, and in order to com-
pute the explanation rules, we use semantic query answering
technologies, taking advantage of the semantic interrelation
of rules and conjunctive queries over DL knowledge bases
(Motik and Rosati 2010). Intuitively, given a class C and us-
ing semantic query answering, the explainer computes and
expresses as rules the conjunctive queries that have as an-
swers individuals representing the exemplar data items that
the unknown classifier classifies as C. Because the exemplar
data are consumed by the classifier, we consider that each
exemplar data item consists of all the information that the
classifier needs to classify it (the necessary features). The
association of a semantic data description to each such item
is modeled by the explanation dataset.

Definition 1 (Explanation Dataset). Let D be a domain of
item feature data, C a set of classes, and V = ⟨IN,CN,RN⟩ a
vocabulary such that C ∪ {Exemplar} ⊆ CN. Let also EN ⊆
IN be a set of exemplars. An explanation dataset E in terms
of D, C, V is a tuple E = ⟨M,S⟩, where M : EN → D is
a mapping from the exemplars to the item feature data, and
S = ⟨T ,A⟩ is a DL KB over V such that Exemplar(a) ∈
A iff a ∈ EN, the elements of C do not appear in S , and
Exemplar and the elements of EN do not appear in T .

Intuitively, D contains items that can be fed to a classi-
fier. Each such item is represented in the associated semantic
data description by an individual (exemplar) a ∈ EN, which
is mapped to the respective feature data by M. The knowl-
edge base S contains the semantic data descriptions about
all individuals in EN. The concept Exemplar is used solely
to identify the exemplars within A (since other individual
may exist) and should not appear elsewhere. The classes C
should not appear in S so as not to take part in any rea-
soning process. The explanation dataset thus provides items
with which we can probe the black-box classifier to explain
it, by making use of the semantic descriptions of the items,
in the context of the underlying knowledge.

Given an explanation dataset, an unknown classifier, and
a class C, the aim of the explainer is to detect the semantic
properties and relations of the exemplar data items that are
classified by the unknown classifier to class C, and represent
them in a human-understandable form, as rules utilizing the
terminology of the knowledge.



Definition 2 (Explanation Rule). Let F : D → C be a clas-
sifier , E = ⟨M,S⟩ an explanation dataset in terms of D, C
and an appropriate vocabulary V = ⟨CN,RN, IN⟩. Given a
concept C ∈ C, the rule

Exemplar(x), c1, c2, . . . , cn → C(x)

where ci is an atom D(u) or r(u, v), where D ∈ CN,
r ∈ RN, and u, v are variables, is an explanation rule of
F for class C over E . We denote the rule by ρ(F, E , C), or
simply by ρ whenever the context is clear. We may also omit
Exemplar(x) from the body, since it is a conjunct of any ex-
planation rule.

Explanation rules describe sufficient conditions for an
item to be classified in class C by a classifier. E.g., if the
classifier classified images depicting wild animals in a zoo
class, an explanation rule could be Exemplar(x), Image(x),
depicts(x, y), WildAnimal(y) → ZooClass(x), assum-
ing that Image,WildAnimal ∈ CN, depicts ∈ RN, and
ZooClass ∈ C. It is important that explanation rules re-
fer only to individuals a ∈ EN that correspond to items
M(a) ∈ D; this is guaranteed by the conjunct Exemplar(x)
in the explanation rule body.

Given a classifier F : D → C and a set of individuals
I ⊆ EN, the positive set (pos-set) of F on I for class C ∈ C
is pos(F, I, C) = {a ∈ I : F (M(a)) = C}.
Definition 3 (Explanation Rule Correctness). Let F : D →
C be a classifier, E = ⟨M,S⟩ an explanation dataset
in terms of D, C and an appropriate vocabulary V , and
ρ(F, E , C) an explanation rule. The rule ρ is correct over
F and E if and only if

fol(S ∪ {Exemplar ⊑ {a | a ∈ EN}}
∪ {C(a) | a ∈ pos(F,EN, C)}) |= ρ

where fol(K) is the first-order logic translation of DL KB K.
For the rest of the paper we will only consider correct

rules, and when F and E are not ambiguous we will refer
to correct rules over F and E simply as correct rules. The
intended meaning of a correct explanation rule is that for ev-
ery a ∈ EN, if the body of the rule holds, then the classifier
classifies M(a) to the class indicated in the head of the rule.
Intuitively, an explanation rule is correct if it is a logical con-
sequence of the underlying knowledge extended by the ax-
iom Exemplar ⊑ {a | a ∈ EN} (which forces Exemplar(x)
to be true in an interpretation I only for x = aI with
a ∈ EN). For instance, the rule of the previous example
Exemplar(x), Image(x), depicts(x, y), WildAnimal(y) →
ZooClass(x) would be correct for the KB S1 = ⟨T1,A1⟩,
where A1 = {Image(a), depicts(a, b),Wolf(b)} and T1 =
{Wolf ⊑ WildAnimal} if a ∈ pos(F,EN,ZooClass), while
it would not be correct for the KB S2 = ⟨∅,A1⟩, nor would
it be correct for S1 if a ̸∈ pos(F,EN,ZooClass). Checking
whether a rule is correct is a reasoning problem which can be
solved by using standard DL reasoners. On the other hand,
finding rules which are correct is an inverse problem that is
much harder to solve.

Explanation Rules From Queries
There is a clear resemblance between a query as described in
the Background section, and the body of an explanation rule

as defined in Def. 2. Thus, by representing the bodies of ex-
planation rules as queries, the computation of explanations
can be treated as a query reverse engineering problem.
Definition 4 (Explanation Rule Query). Let F : D → C
be a classifier, E = ⟨M,S⟩ an explanation dataset in terms
of D, C and an appropriate vocabulary V , and ρ(F, E , C):
Exemplar(x), c1, c2, . . . , cn → C(x) an explanation rule.
The query

qρ
.
= {Exemplar(x), c1, c2, . . . , cn}x

is the explanation rule query of explanation rule ρ.
This definition establishes a 1-1 relation (up to variable re-

naming) between ρ and qρ. To compute queries correspond-
ing to explanation rules that are guaranteed to be correct, we
prove Theorem 1 (see the supplementary material for proof).
Theorem 1. Let F : D → C be a classifier, E = ⟨M,S⟩
an explanation dataset in terms of D, C and an appropriate
vocabulary V , ρ(F, E , C): Exemplar(x), c1, c2, . . . , cn →
C(x) an explanation rule, and qρ the explanation rule query
of ρ. The explanation rule ρ is correct if and only if

cert(qρ,S) ⊆ pos(F,EN, C)

Theorem 1 allows us to compute guaranteed correct rules,
by finding a query q for which cert(q,S) ⊆ pos(F,EN, C).
Intuitively, an explanation rule query is correct for class C,
if all of its certain answers are mapped by M to feature data
which is classified in class C. It follows that a query with
one certain answer which is an element of the pos-set is a
correct rule query, as is a query q for which cert(q,S) =
pos(F,EN, C). Thus, it is useful to define a recall metric
for explanation rule queries by comparing the set of certain
answers with the pos-set of a class C:

recall(q, E , C) =
|cert(q,S) ∩ pos(F,EN, C)|

|pos(F,EN, C)|
.

Given the above, one approach to the problem of finding
explanation rules for an explanation dataset is to reduce it to
forming candidate queries, computing their answers, and as-
sessing the correctness of the corresponding rules. The com-
putation of arbitrary candidate explanation rule queries for
the KB S of an explanation dataset is in general hard since
it involves exploring the query space Q of all queries that
can be constructed using the underlying vocabulary V and
getting their certain answers for S . Difficulties arise even
in simple cases since the query space is in general infinite.
However, the set of all possible distinct answer sets is fi-
nite, and in most cases, it is expected to be much smaller
than its upper limit, the powerset 2IN. There are works that
approach this problem in a similar way to ours, but em-
ploy heuristic algorithms in order to alleviate the computa-
tional complexity of the problem (Liartis et al. 2021). In this
work, we use a simple exhaustive algorithm based on (Chor-
taras, Giazitzoglou, and Stamou 2019) in order to maintain
the guarantees of the framework and showcase its potential,
without being concerned about computational optimizations
which are beyond the scope of this paper. We briefly de-
scribe and discuss this algorithm below for transparency and
reproducibility reasons.



Algorithm 1: QuerySpaceDAG
Data: Vocabulary V , KB K, a maximum query depth k ≥ 0
Result: Query space DAG G
Compute the set B of all non-syntactically equivalent queries
{C1(x), . . . , Cn(x)}x, where Ci ∈ CN\{Exemplar}, n ≥
1.

Compute the set F of all non-syntactically equivalent
queries {r1(u1, v1), . . . , rn(un, vn)}x,y , where ri ∈ RN,
n ≥ 1, each ui, vi is either x or y and ui ̸= vi.

Initialize an empty set of queries Q.
for i = 0 . . . k do

Compute the set Ti of all trees of depth i.
foreach t ∈ Ti do

Assign to each node v of t a distinct variable var(v).
Assign x to the root of t.

Construct all non-syntactically equivalent queries q
obtained from t by adding to the body of q: i) for
each node v of t, the body of an element of B∪{∅}
after renaming x to var(v), ii) for each edge (v1, v2)
of t, the body of an element of F after renaming x
to var(v1) and y to var(v2), and iii) Exemplar(x).

Condense all qs and add them to Q.
end

end
while there are q1, q2 ∈ Q s.t.cert(q1,K) = cert(q2,K) do

remove q1, q2 from Q and add q1 ⊓ q2 to Q.
end
Arrange the elements of Q in a DAG G, making q1 a child
of q2 iff cert(q1,K) ⊂ cert(q2,K).

return the transitive reduction of G

Alg. 1 explores a useful finite subset of Q, namely the
tree-shaped queries of a maximum depth k (Glimm et al.
2007). It constructs all possible such queries (that include
Exemplar(x) in the body), obtains their answers, and ar-
ranges them in a directed acyclic graph (the query space
DAG) using the subset relation on the answer sets. The
queries are constructed in the for loop, and then the while
loop replaces queries having the same answer set by their
intersection. The intersection q1⊓q2 of two instance queries
q1, q2 with answer variable x is the query cond(q1 ∪ q2θ),
where θ renames each variable appearing in q2 apart from
x to a variable not appearing in q1. Thus, from all possible
queries with the same answers, the algorithm keeps only the
most specific query q of all such queries. Intuitively, this is
the most detailed query. Finally, the queries are arranged in
a DAG. By construction, each node of the DAG is a query
representing a distinct answer set.

Theorem 2. Let F : D → C be a classifier, E = ⟨M,S⟩
an explanation dataset in terms of D, C and an appropri-
ate vocabulary V , and ρ(F, E , C) a correct tree-shaped ex-
planation rule of maximum depth k. The DAG constructed
by Alg. 1 contains a query qρ′ corresponding to a correct
explanation rule ρ′(F, E , C) with the same recall as ρ, s.t.
qρ′ ≤S qρ.

Given Theorem 2 (see the supplementary material for
proof) the nodes corresponding to correct rules for some

pos(F,EN, C) can be reached by traversing the graph start-
ing from the root and finding the first nodes whose answer
sets are subsets of pos(F,EN, C). These nodes correspond
to the explanation rules with the highest recall whose un-
derlying queries do not subsume each other, and the de-
scendants of that nodes provide all subsumed queries cor-
responding to correct explanation rules with smaller recall.
The DAG has a unique root because answer sets are subsets
of cert({Exemplar(x)}x,S).

Experiments and Evaluation
In this section, we evaluate the proposed approach, which
we call KGrules. We conduct experiments on tabular and
image data, investigating how explanation datasets of differ-
ent sizes and expressivities affect the explanations, we com-
pare our work with other rule-based explanation methods,
and discuss the quality and usability of the results.

Tabular Classifier
The first set of experiments is conducted on the Mushroom1

dataset which contains data in tabular form with categori-
cal features. Our proposed approach is overkill for such a
dataset, since its representation as a DL KB does not contain
roles nor a TBox, however on this dataset we can compare
the proposed method with the state-of-the-art. To represent
the dataset as a knowledge base in order to run Alg.1, we
create a concept for each combination of categorical feature
name and value, ending up with |CN| = 123 and an indi-
vidual for each row of the dataset. Then we construct an
ABox where the type of each individual is asserted based
on the values of its features and the aforementioned con-
cepts. To measure the quality of the generated explanations,
the dataset is split in three parts: (I) A classification-training
set on which we train a simple two-layer Multi-Layer Per-
ceptron (MLP) classifier (that achieved 100% test accuracy),
(II) an explanation-training set which we use to generate ex-
planations for the predictions of the classifier with the meth-
ods under evaluation, and (III) an explanation-testing set on
which we measure the fidelity (ratio of input instances on
which the predictions of the model and the rules agree, over
total instances) of the rules. We also measure the number of
rules and the average rule length for each case. We compare
our method with Skope-Rules2 and rule-matrix (Ming, Qu,
and Bertini 2019) which implements scalable bayesian rule
lists (Yang, Rudin, and Seltzer 2017), on different sizes of
explanation-training sets. The results are shown in Table 1.
All methods perform similarly with respect to fidelity, with
no clear superiority of any method since they all achieve near
perfect performance, probably because of the simplicity of
the dataset. Despite the fact that our method is not tailored
to such problems like the other two methods, we can see
that it has similar performance to the state of the art for rule-
based explanations of tabular classifiers. However, although
our method is much more expressive than others (and we
can see it in the following subsections where our method
is able to explain complex set-related classifiers much more

1https://archive.ics.uci.edu/ml/datasets/mushroom
2https://github.com/scikit-learn-contrib/Skope-Rules



Figure 2: An image from the CLEVR-Hans3 dataset.

efficiently) certain limitations (e.g. the lack of negation) re-
sults in this case to more and slightly longer rules compared
to the other two methods.

Image Classifier: CLEVR-Hans3
Although the explanation of tabular classifiers has been ad-
dressed in many cases in literature, of great interest is the
(more challenging) explanation of deep learning models that
take as input raw data, like images or text. Hence, for the sec-
ond set of experiments, we employ CLEVR-Hans3 (Stam-
mer, Schramowski, and Kersting 2020) which is a dataset of
images with intentionally added biases in the train and val-
idation set which are absent in the test set. For example the
characteristic of the first class is that all images include a
large cube and a large cylinder, but the large cube is always
gray in the training and validation sets, while it has a random
color in the test set. This makes it ideal for the evaluation of
XAI frameworks since it creates classifiers with known bi-
ases. On this dataset, we conduct two experiments. Firstly,
we explore the effect of the size of the explanation dataset by
testing whether our method can predict the known descrip-
tion of the three classes. Secondly, we evaluate our method
on a real image classifier and compare the results with other
rule-based methods.

For representing available annotations as a DL KB, we
define an individual name for each image and for each ob-
ject depicted therein, and a concept name for each color,
size, shape, and material of the objects. We also include
a role name contains, to connect images to objects they
depict. Then, in the ABox, we assert the characteristics
of each object and link them to the appropriate images
by using the role. For example, in Fig. 2 we can see
a sample image from the CLEVR-Hans3 dataset with id
i, which is described in the ABox of our explanation
datasets with the assertions: {Exemplar(i), contains(i,o1),
Red(o1), Sphere(o1), Large(o1), Rubber(o1), contains(i,o2),
Green(o2), Cylinder(o2), Small(o2), Rubber(o2), ... }.

For comparing with other methods we also create a tabu-
lar version of the dataset, in which each object’s character-
istics are one-hot encoded, and an image is represented as a

Size Method Fidelity Nr. of Rules Avg. Length

10
0 KGrules 97.56% 11 5

RuleMatrix 94.53% 3 2
Skope-Rules 97.01% 3 2

20
0 KGrules 98.37% 11 5

RuleMatrix 97.78% 4 2
Skope-Rules 98.49% 4 2

60
0 KGrules 99.41% 13 4

RuleMatrix 99.43% 6 1
Skope-Rules 98.52% 4 2

Table 1: Performance on the Mushroom dataset.

concatenation of the encodings of the objects it depicts.
Using the true labels of the data allows us to use the de-

scription of each class as ground truth explanations. Table
2 shows a condensed version of the explanation rules pro-
duced by Alg. 1 for an ideal classifier (accuracy=100%)
with explanation datasets of various sizes, along with ground
truth and the explanation rule with highest recall per class for
a real classifier. The full explanations are obtained by adding
to that condensed versions the conjuncts Exemplar(x), and
contains(x,t), for all other appearing variables t ̸= x, as
well as the tail of the rule (→ ClassX) for the respective
class X . All explanations on the ideal classifier achieved re-
call=100%. We can see that with explanation datasets with
600 or more exemplars we are able to predict the ground
truth for all 3 classes. Even with 20 exemplars, we are able
to produce the ground truth explanation for one of the classes
and with 40 or more exemplars we produce ground truth ex-
planations for 2 out of the 3 classes and almost for the third
class too (only one characteristic of one object missing).

In order to produce accurate explanations it seems use-
ful to have individuals close to the “semantic border” of the
classes, i.e. individuals of different classes with similar de-
scriptions. Intuitively, such individuals guide the algorithm
to produce a more accurate explanation in a similar manner
that near-border examples guide a machine learning algo-
rithm to approximate better the separating function. Follow-
ing this intuition, we experiment with two of the small ex-
planation datasets that almost found the perfect explanations
(size of 40 and 80). By strategically choosing individuals ,
we are able to obtain two small explanation datasets, one of
size 43 and one of size 82, that when used by Alg. 1 produce
the ground truth explanations for all 3 classes. This indicates
the importance of the curation of the explanation dataset,
which is not an easy task, and the selection of “good” indi-
viduals for the explanation dataset is not trivial.

Finally we use our framework to explain a real classifier
trained on CLEVR-Hans3, and compare our explanations
with Skope-Rules and RuleMatrix. The classifier we use is a
ResNet34-based model, that achieved overall 99,4% valida-
tion accuracy and 71,2% test accuracy (probably due to the
confounded train and validation sets). More details about the
classifier’s performance can be found in the supplementary
material.

We curate an explanation set with 100 images so that it
also accurately explains the ground truth, and we used it to



Nr. of images Class 1 Class 2 Class 3

20 ✓
Small(y),
Metal(y),
Cube(y)

Yellow(y),
Small(y),
Blue(z),
Large(z),
Sphere(z)

40 / 60 ✓ ✓

Yellow(y),
Small(y),
Blue(z),
Large(z),
Sphere(z)

80 / 100 / 200 / 400 ✓ ✓

Yellow(y),
Small(y),
Sphere(y),
Blue(z),
Sphere(z)

600 / 800 / 1000 ✓ ✓ ✓

Ground Truth

(Gray(y)) ,
Large(y),
Cube(y),
Large(z),
Cylinder(z)

Small(y),
(Metal(y)),
Sphere(y),
Small(z),
Metal(z),
Cube(z)

Yellow(y),
Small(y),
Sphere(y),
Blue(z),
Large(z),
Sphere(z)

Real Classifier

Large(y),
Cube(y),
Gray(z),
Large(z),
Large(w),
Cylinder(w)

Small(y),
Metal(y),
Cube(y)

✓

Table 2: Explanations on CLEVR-Hans3. The concepts in
parentheses are the confounding factors in the ground truth
row. Check mark (✓) indicates that the explanation is the
same as the ground truth (without the confounding factors).

explain the real classifier. Table 3 shows that our method sig-
nificantly outperforms the other rule-based methods in terms
of fidelity, with a notable smaller number of rules which is
used as an indication of understandability of a rule-set. The
set nature of the input data (each image contains a set of
objects with specific characteristics) shows the limitations
of other rule-based methods in such realistic problems. We
are able to reproduce the rules created by our method us-
ing the tabular format that is fed to the other classifiers,
showing that the data format is not a limitation in terms of
fidelity, but it requires a large number of rules, which in-
dicates the usefulness of rule-based methods like ours that
do not only work on tabular data. Investigating the expla-
nations produced by our method, we are also able to de-
tect potential biases of the classifier due to the confound-
ing factors of the dataset. For example, regarding the first
class (all images contain a large cube and a large cylinder),
the rule with the highest recall produced for the real clas-
sifier is: contains(x, y), Gray(y), Large(y), contains(x, z),
Cylinder(z), Large(z) → Class1(x) showing the existence
of a large cylinder, and detecting the potential color bias of

Method Fidelity Nr. of Rules Avg. Length
KGrules 85.07% 4 5

RuleMatrix 58.09% 42 2
Skope-Rules 77.18% 20 3

Table 3: Performance on the CLEVR-Hans3 dataset.

Figure 3: An image from the Visual Genome dataset.

another large object created by the intentional bias of the
train and validation set (the large cube is always gray in the
train and validation sets).

Image Classifier: Visual Genome
As a third experiment, we evaluate our framework on an ex-
planation dataset of real-world images, described by an ex-
pressive knowledge, that includes roles and a TBox. Specifi-
cally, we utilize the Visual Genome dataset (VGD) (Krishna
et al. 2017) which contains richly annotated images, includ-
ing descriptions of regions, attributes of depicted objects and
relations between them. On this dataset, we attempt to ex-
plain image classifiers trained on ImageNet. We define three
super-classes of ImageNet classes which contain a) Domes-
tic, b) Wild and c) Aquatic Animals , because they are more
intuitive to perform a qualitative evaluation, when compared
to the fine-grained ImageNet classes. We represent the avail-
able VGD annotations as a DL KB, where the ABox con-
sists of the scene graphs for each image, in which each node
and edge is labeled with a WordNet (WN) synset and the
TBox consists of the WN hypernym-hyponym hierarchy. In
the ABox we also include assertions about which objects are
depicted by an image in order to connect the exemplar data
with the scene graphs. For example, the image in Fig. 3 with
id i is described in the ABox by the assertions: {Exemplar(i),
contains(i,person1), contains(i,sea1), surfer.n.01(person1),
ocean.n.01(sea1), blue.s.01(sea1), travel.v.01(person1,sea1)}
, and the TBox contains the axioms: {ocean.n.01 ⊑
body of water.n.01, surfer.n.01 ⊑ swimmer.n.02, ...}.

Since in the original VGD annotations are linked to WN
automatically, there are errors, thus we chose to manually
curate a subset of 100 images. This is closer to the intended



Network Rules

V
G

G
-1

6 artifact(y), dog(z), brown(w) → Domestic(x)
green(y), plant(z), organ(w) → Wild(x)
whole(y), ocean(z) → Aquatic(x)

W
R

N animal(y),wear(y, z), artifact(z) → Domestic(x)
green(y), plant(z), nose(w) → Wild(x)
surfboard(y) → Aquatic(x)

R
es

N
ex

t artifact(y), dog(z), brown(w) → Domestic(x)
ear(y), plant(z), nose(w) → Wild(x)
fish(y), structure(z) → Aquatic(x)

Table 4: Explanation rules utilizing the animal explanation
dataset. Rules are shown in condensed form: the full rules
are obtained by adding the conjuncts contains(x, t) for all
appearing variables x ̸= t.

use-case of our proposed method, in which experts would
curate explanation datasets for specific domains. We explain
three different neural architectures3: VGG-16 (Simonyan
and Zisserman 2014), Wide-ResNet (WRN) (Zagoruyko and
Komodakis 2016) and ResNeXt (Xie et al. 2016), trained for
classification on the ImageNet dataset. The context of VGD
is too complex to be transformed into tabular form in a use-
ful and valid way for the other rule-based methods. Table 4
shows the correct rules of maximum recall for each class and
each classifier. We discuss three key explanations:

1. Wide ResNet: surfboard(y) → Aquatic(x). It seems that
the classifier has a bias accepting surfer/surfboard images as
aquatic animals probably due to the sea environment of the
images; further investigation finds this claim to be consis-
tent, showing the potential of this framework in detecting
biases.

2. Wide ResNet: animal(y), wear(y, z), artifact(z) →
Domestic(x). It is interesting to compare this explanation
with another correct rule for the same classifier with lower
recall: animal(y), collar(z) → Domestic(x). By considering
roles between objects we get a more accurate (higher re-
call) and informative explanation, denoting the tendency of
the classifier to classify as Domestic any animal that wears
something man-made. This example shows how more com-
plex queries enhance the insight (wearing an artifact) while
less expressive ones might only see a part of it (collar). Here
we can also see one of the effects of the TBox hierarchy on
the explanations, since this rule covers many sub-cases (like
dog wears collar, and cat wears bowtie) that would require
multiple rules if it wasn’t for the grouping that stems from
the TBox.

3. ResNeXt: nose(y), plant(z), ear(w)→ Wild. Although
this explanation provides information that is related to the
natural environment of the images classified as Wild (plant),
we see also some rather odd concepts (nose, ear). While this
could be a strange bias of the classifier, it is probably a flaw
of the explanation dataset. We discovered that images are not
consistently annotated with body parts, like noses and ears.
Thus, through the explanations, we can also detect weak-

3https://pytorch.org/vision/stable/models.html

nesses of the explanation set. The rules are limited by the
available knowledge, so we should constantly evaluate the
quality and expressivity of the knowledge that is used in or-
der to produce accurate and useful explanations.

We also investigated explanation datasets with different
levels of information like details about the image bright-
ness, contrast, sharpness, saturation, etc. Our experimenta-
tion gives a good intuition regarding the usefulness of the
different levels of explanation. Consider an application simi-
lar to the classifier used in this subsection, that classifies ani-
mals. The end-user of the application when asking ”why this
animal was classified as ’elephant’” would expect an expla-
nation in terms of characteristics of animals, like ”because
the animal has a trunk, it is grey, etc.” but not an explana-
tion about the characteristics of the image like ”because the
image has high brightness and low saturation”, let alone an
explanation that mixes all these things like ”because the im-
age has high brightness and the animal is grey”. The latter
explanations would not answer the user’s question, would
probably be misleading, and would reduce the user’s trust
in the application, even if they did not indicate a bias. On
the other hand, the AI engineer that developed this applica-
tion would be very interested in explanations concerning the
images’ characteristics because this could indicate potential
biases and guide them for further investigation.

Conclusions

In this work, we introduced a framework for representing ex-
planations for ML classifiers in the form of rules, generated
explanations for various classifiers and datasets, and com-
pared our work with other methods. Our proposed query-
based rules showed superiority in terms of expressivity com-
pared to existing methods, producing consistent explana-
tions in cases where other methods struggled. We believe
that the transparency of the proposed explanation dataset,
combined with the guarantees of framework and algorithm
improve user awareness when compared with other rule-
based explanation methods. Additionally, the control over
the terminology as well as the selection of information that
the explanation dataset offers allow for the creation of more
understandable and relevant explanations. Regarding under-
standability, however, this should be evaluated in a human
study, which we plan to conduct in the future. In addition,
we are in the process of creating explanation datasets in col-
laboration with area experts for the domains of medicine and
music. We are investigating what constitutes a “good” expla-
nation dataset with regard to its size, distribution, and repre-
sented information. Finally, we are exploring improvements
and optimizations for the algorithmic part, like heuristic so-
lutions, approaches from other areas like Inductive Logic
Programming (ILP), adaptations of our existing algorithm
to more DL dialects, relaxations for getting approximate so-
lutions faster, and modifications in order to generate differ-
ent types of explanations such as local, counterfactual, and
prototype explanations.
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