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Abstract
Generative AI is increasingly important in software engineer-
ing, including safety engineering, where its use ensures that
software does not cause harm to people. This also leads to
high quality requirements for generative AI. Therefore, the
simplistic use of Large Language Models (LLMs) alone will
not meet these quality demands. It is crucial to develop more
advanced and sophisticated approaches that can effectively
address the complexities and safety concerns of software sys-
tems. Ultimately, humans must understand and take respon-
sibility for the suggestions provided by generative AI to en-
sure system safety. To this end, we present an efficient, hybrid
strategy to leverage LLMs for safety analysis and Human-AI
codesign. In particular, we develop a customized LLM agent
that uses elements of prompt engineering, heuristic reason-
ing, and retrieval-augmented generation to solve tasks asso-
ciated with predefined safety concepts, in interaction with a
system model graph. The reasoning is guided by a cascade
of micro-decisions that help preserve structured information.
We further suggest a graph verbalization which acts as an in-
termediate representation of the system model to facilitate
LLM-graph interactions. Selected pairs of prompts and re-
sponses relevant for safety analytics illustrate our method for
the use case of a simplified automated driving system.

Introduction
The advent of transformer-based (Vaswani et al. 2017) large
language models (LLMs) has sparked enormous popularity
of generative artificial intelligence (AI) for creative, text-
based tasks. Representative of this trend is the reported
record of OpenAI’s ChatPGT for the fastest growing user
base of all times in February 2023 (Reuters 2023). The
high quality of auto-generated text has inspired the explo-
ration of LLMs for tasks that involve structured data, such as
knowledge graphs. In particular, a widely desired use case
is the application of LLMs to safety-analytical tasks (Jin
et al. 2023; Pan et al. 2023; Wang et al. 2023), for exam-
ple, reasoning about fault propagation in model graphs and
associated risks. Attempts to make use of LLMs for a for-
mal hazard analysis have been made with moderate success
(Diemert and Weber 2023).

A particular challenge lies in the transformation of ver-
balized content to a structured graph information, and vice
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Figure 1: Layout of the Human-AI safety codesign frame-
work: A user interacts with the LLM agent through a chat
prompt and receives a text response. The LLM agent inter-
faces to a database containing a graph description of the sys-
tem model in IR, as well as safety concepts, and analysis
tools. System manipulations can update the database and al-
ter the system model. The system model and its changes are
displayed to the user.

versa. Since the text generation process is of statistical na-
ture, thus not bound by logical constraints, LLM responses
will not necessarily preserve information structures of a
given input. Existing strategies to tackle this problem can be
broadly categorized as follows (Jin et al. 2023): 1) Prompt-
engineering to encourage specific output formats or struc-
tural rules; 2) Heuristic or algorithmic reasoning: Encour-
aging the LLM to perform chain-of-thought (CoT) reason-
ing, for example, to solve the problem step by step follow-
ing self-generated or predetermined instructions; 3) Making
use of external knowledge using retrieval-augmented gener-
ation (RAG), for example via non-AI tools; 4) Fine-tuning or
retraining models to empirically minimize the loss of struc-
tured information, see e.g., GraphGPT (Tang et al. 2023).

This article presents a concept-guided approach aimed at
enhancing the capabilities of LLMs for graph analysis and
manipulation, particularly in the context of safety-relevant
developments. To achieve this goal, we have integrated the
strengths of LLMs with the rigorous standards of safety en-
gineering models and analysis. Starting from a structured
system model graph, we first establish a verbalized interme-
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Figure 2: Outline of the workflow of LLM agent decisions and database interactions. The custom agent runs a cascading
decision layer to identify the task type, and a subsequent layer to formulate the task for information retrieval. The latter looks
up knowledge from a vectorstore database, or uses functional tools to calculate for example the critical path.

diate representation (IR) of the system to facilitate the com-
prehension of its components and relationships by the LLM.
A custom LLM agent is designed who deploys a hybrid
strategy featuring the techniques 1) to 3) above: The agent
performs a series of LLM calls to categorize and formal-
ize the task at hand according to predefined concepts. Sub-
sequently, RAG techniques are leveraged to offload struc-
tural computations to external functions. We test our method
for the example of a simplified automated driving architec-
ture, and present selected experimental results for the tasks
of fault propagation, critical path finding, single-points-of-
failure detection, and node replication. Our work provides
the basis for an interactive, LLM-based Human-AI safety
codesign framework.

Model
The overall system layout is shown in Fig. 1. Key compo-
nents of our architecture are explained in the following.

System model and intermediate representation: The
system model contains the system architecture, including
the system components and their interactions, as well as ad-
ditional safety-related information required to model fault
propagation within the system. To ensure interoperability
with established industrial meta model formats, we cre-
ate the system model with the Eclipse-based OSATE tool
(Carnegie Mellon University 2023) and export the resulting
ECore file as xml. The elements of the xml model (EClass,
EReference, EAttribute) can be directly mapped onto the el-
ements of a generic graph (nodes, edges, attributes). Even
though LLMs are capable of reading and interpreting xml
structures directly, we find that inaccuracies can be reduced
when operating with a system description that has a closer

resemblance with natural language. Therefore, we further
verbalize the xml system model to an IR which takes an in-
tuitive list structure:

Nodes:
- Node 1
- Node 2
- ...

Edges:
- Node 1 --> Node 2
- ...

Attributes:
- Node 1: Attribute 1
- ...

This IR represents the basis of system-relevant informa-
tion for the LLM agent. For safety analysis, we assume that
each node is subject to possible failure. In order to model
the propagation of system faults, we populate graph node
attributes with verbalized logic of fault gates (e.g., AND,
OR, N-out-of-M) to represent fault trees (Avižienis et al.
2004; Trapp 2016). Further, start and end nodes of the sys-
tem graph are specified with corresponding attributes. For
the current proof-of-concept, we used an integrated system-
safety model. However, in model-based safety engineering,
long-lasting work has been conducted on integrating system
and safety models (Domis and Trapp 2008), which can be
used as a scalable basis for further development.

LLM: At the core, we use OpenAI’s GPT3.5 − turbo
(OpenAI 2023) model for LLM inferences. As our concept-
guided approach requires the LLM to solve a series of rather
simple micro-decisions, we expect to see in further work,
that also much smaller and simpler models such as LLama2
(Touvron et al. 2023) or Mistral-7B (Jiang et al. 2023) suf-
fice for this purpose.



Figure 3: Example use case of a simplified automated driving system. The node labels denote the component name (top row)
and the fault gate attribute below (if none is given, an AND fault gate of all inputs is assumed). 2OO3 means that two out of
three of the listed inputs are required. Start and end nodes are further labeled explicitly. The figure is a pydot visualization of
the ECore file.

LLM agent: LLMs are conveniently orchestrated by
functional wrappers called agents, which can be configured
to self-induce an iterative chain of thoughts, or to interface
automatically to external tools and sources of information.
We here use the LangChain library (Harrison Chase 2022) to
design a customized agent. Importantly, we find that equip-
ping an agent with multiple tools can quickly lead to inac-
curate tool usage, unless the verbalized trigger conditions
are well-separated in linguistic space. At the same time, for
self-induced CoT flows, it is challenging to incorporate and
assert procedural safety guardrails.

We therefore implement a different workflow, as illus-
trated in Fig. 2: The agent cascades the input prompt through
a network of micro-decisions, where a single LLM call as-
sociates the input with the best match among only 2-4 pre-
defined concepts in each decision. For example, as shown in
Fig. 2, in the first decision node the agent associates the input
with one of four possible task concepts of Safety question
answering, System safety analysis, Suggestions for fault-
tolerance, and Other. To improve the quality of the micro-
decision, we use few-shot learning (Brown et al. 2020) by
augmenting the prompts with around ten hand-crafted exam-
ple triggers for each concept. The last layer of our decision
network is a Task formulation layer, where the fully identi-
fied task concept is used together with the given prompt to
refine a specific task prompt. Finally, the external tools or
information lookup mechanisms that are provided for this
specific task are called and the result is rephrased as a user
response. We find that this method overcomes some of the
challenges mentioned above: The CoT flow is tightly guided
by predefined concepts, yet allows sufficient flexibility in the
prompt formulation, and tool triggers cannot overlap since
they are strictly associated with specific task concepts.

Database/toolset: We provide a collection of information
that is retrieved from a knowledge base, or generated on de-

mand with deterministic functions. This includes, but is not
limited to the following: The IR of the system, documenta-
tion about safety practices, a function to calculate fault prop-
agation using the fault gates retrieved from the system IR, a
function to calculate the critical path using Dijkstra’s algo-
rithm (Dijkstra 1959) for the shortest path and start and end
nodes from the IR, a function to find the single points of fail-
ure, a function to replicate a given node or edge in the model
IR. The usage of these tools is triggered in a predefined way
depending on the identified task category.

Experiments
We test our model with the use case of a simplified auto-
mated driving system modeled in OSATE, see Fig. 3, here
visualized with pydot (Carrera 2021). Fault gates are imple-
mented as respective node attributes and given in the fig-
ure below the node label, for example, the ImageProcessor
node will turn faulty if at least two out of three (2OO3)
camera input nodes are faulty. To verify the effectiveness of
our concept-guided agent, we test our approach with sample
questions in the domain of system safety design. Representa-
tive examples and results are given in Tab. 1. In all examples,
we find that the tasks have been accurately identified and for-
mulated, and the correct information was retrieved with the
appropriate tools. For example, the agent can make sugges-
tions about modifying the graph to improve fault tolerance.
In our implementation, this is based on the predefined con-
cept of redundancy and the usage of the tool which finds
single points of failures to select the best replication candi-
date. To modify the system graph, the agent uses the graph
replication tool and updates the xml model accordingly. We
further note that, in the response, the agent leverages general
knowledge to relate the functionality of the relevant compo-
nents with its impact on safety.



Prompt Response
What happens if
Radar1, Radar2
and IMU have a
fault?

In this scenario, the faulty components are IMU, Radar1, Radar2, and SignalProcessor. When these
components have a fault, it can have several consequences for the system. The IMU (Inertial Mea-
surement Unit) is responsible for measuring the orientation, velocity, and acceleration of the vehicle.
If the IMU has a fault, it can lead to inaccurate measurements, which can affect the overall navigation
and control of the vehicle. The radars (Radar1 and Radar2) are used for detecting and tracking objects
in the environment. If these radars have a fault, it can result in missed or incorrect detections, which
can impact the perception and decision-making capabilities of the system. The SignalProcessor is
responsible for processing the sensor data and extracting relevant information. If the SignalProces-
sor has a fault, it can lead to incorrect or incomplete data processing, which can affect the overall
performance and reliability of the system. Overall, when these components have a fault, it can lead
to degraded performance, reduced safety, and potentially compromised functionality of the system.

Show me the crit-
ical path.

The critical path in the given scenario includes the following components: Camera1, Camera2, Col-
lisionAvoidance, GPS, IMU, ImageProcessor, Lidar1, Map, PathPlanner, PointCloudProcessor, Sen-
sorFusion, and VehicleController. The critical path represents the sequence of components that are
essential for the system’s operation and have the longest duration in terms of time. These compo-
nents are crucial for tasks such as perception, sensor fusion, planning, and control, and any faults
or failures in these components can significantly impact the overall performance and safety of the
system.

Explain the criti-
cal path, given the
last fault.

The critical path in this scenario, considering the last reported faulty system components, consists of
the following components: Camera1, Camera3, CollisionAvoidance, GPS, ImageProcessor, Lidar1,
Map, PathPlanner, PointCloudProcessor, SensorFusion, VehicleController, and VelocitySensor. The
critical path represents the sequence of components and processes that are essential for the system’s
operation and performance. Any delay or failure in these components can significantly impact the
overall functionality and reliability of the system. It is important to note that the previously reported
system faults, including IMU, Radar1, Radar2, and SignalProcessor, can also affect the critical path
and further exacerbate the potential consequences to the system.

What are the sin-
gle points of fail-
ure?

The single point of failure components in the given scenario are PathPlanner, VehicleController,
Map, SensorFusion, CollisionAvoidance, and GPS. These components are considered single points
of failure because if any of them were to fail, it could result in a complete system failure or significant
degradation in the system’s performance. For example, if the PathPlanner fails, the system may not
be able to generate safe and efficient trajectories for the vehicle. Similarly, if the VehicleController
fails, the system may lose control over the vehicle’s movements. The Map, SensorFusion, Collision-
Avoidance, and GPS components are also critical for accurate perception, situational awareness, and
navigation, and their failure can have serious consequences for the overall system functionality.

How would you
make my system
safer?

To make your system safer, I would suggest performing replication on the component SensorFusion.
SensorFusion should be replicated because it is a critical component that relies on multiple inputs
from ImageProcessor, SignalProcessor, and PointCloudProcessor. If SensorFusion fails, it can lead
to incorrect data being sent to PathPlanner and CollisionAvoidance, compromising the overall safety
of the system. By replicating SensorFusion, the system can continue to function even if one instance
of SensorFusion fails, ensuring that accurate and reliable data is provided to the other components.

Table 1: Selected example prompts and responses. Refer to Fig. 3 for the system description. The example in row three refer-
ences the agent’s memory, as last fault refers to the last mentioned system fault in the chat history.

Conclusion and Outlook

Our approach of a concept-guided LLM agent overcomes
two challenges typically encountered when solving genera-
tive text tasks on structured data: 1) Chain-of-thought pro-
cesses derail and no longer comply with a set of required
rules, or miss their goals, 2) Trigger conditions to retrieve
external information via tools become inaccurate when the
number of possible options increases. Instead, we here guide
the thought process with a series of micro-decisions to en-
sure that the right tool triggers are met. We envision to ex-
tend our setup to more concepts and larger decision cas-
cades, such that more complex tasks can be tackled. Our

work provides the basis for an interactive framework where
LLMs assist in Human-AI safety codesign.
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