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Abstract

Conventional knowledge engineering approaches aiming to
create Enterprise Knowledge Graphs (EKG) still require a
high level of manual effort and high ontology expertise,
which hinder their adoption across industries. To tackle
this issue, we explored the use of Large Language Models
(LLMs) for the creation of EKGs through the lens of a design-
science approach. Findings from the literature and from ex-
pert interviews led to the creation of the proposed artefact,
which takes the form of a six-step process for EKG develop-
ment. Scenarios on how to use LLMs are proposed and imple-
mented for each of the six steps. The process is then evaluated
with an anonymised data set from a large Swiss company.
Results demonstrate that LLMs can support the creation of
EKGs, offering themselves as a new aid for knowledge engi-
neers.

Introduction
The amount of data being generated today is expanding
quickly (Song et al. 2019), and the corporate environment
is becoming more complex (Simsek et al. 2022). Enter-
prises are increasingly looking for methods to gain insight-
ful information and make better decisions from their knowl-
edge assets. Enterprise Knowledge Graphs (EKGs) have
become a potent tool for this purpose (Abu-Salih 2021).
They have the ability to preserve relationships and mean-
ing (Kejriwal 2019) in data when combining them from di-
verse sources (Zou 2020). However, because it often calls
for subject-matter experts with in-depth knowledge of the
knowledge base (Kejriwal 2019), the development process
of knowledge graphs from differently structured, domain-
specific data poses major obstacles (Simsek et al. 2022).
This paper investigates a promising new approach (Bi et al.
2023; Zhu et al. 2023) to enterprise knowledge graph cre-
ation by introducing probabilistic language models to the
process. Through the use of generative artificial intelligence,
this method enables the automated construction of knowl-
edge graphs in various domains. In this work, the terms
”knowledge graph” and ”ontology” are used interchange-
ably, which follows a more academic stance than an indus-
trial one. The paper is structured as follows. First, section
describes the related work that motivates the worthiness of

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this study. Section reports an enterprise knowledge graph
engineering process, which derives from the findings from
the literature review and experts’ reviews. Next, the sug-
gested artifact is described in section , while a running ex-
ample of how to use the process is described in section .
The evaluation and related findings are reported in section .
Finally, section concludes the paper.

Related Work and Research Objective
Knowledge graphs have drawn a lot of interest (Ehrlinger
and Wöß 2016; Hogan et al. 2021) because of their ability to
represent complex information in a structured and intercon-
nected format (Chaudhri et al. 2022). Their inherent nature
of capturing and modelling relationships among entities al-
lows for meaningful analyses (Angles et al. 2017) and rea-
soning (Hogan et al. 2021). Based on the provenance of the
data, two types of knowledge graphs can be distinguished.
Open knowledge graphs draw their underlying data from
publicly available sources. Proprietary knowledge graphs,
on the other hand, obtain data from non-public, enterprise
internal bases (Chaudhri et al. 2022).

Either way, creating a knowledge graph becomes espe-
cially difficult when working with large amounts (Fensel
et al. 2020) of differently structured data from various
sources (Tamašauskaitė and Groth 2023). Many approaches
have been proposed for creating knowledge graphs, includ-
ing bottom-up (Li et al. 2020), top-down (Li et al. 2020)
and in-between methods (Ji et al. 2022; Tamašauskaitė and
Groth 2023). The procedures generally consist of multiple
steps that deal with data extraction, knowledge fusion and
information representation. In detail, entities are identified
and harmonised, corresponding relationships are detected
and textual descriptions (labels) are added.

The reliance on human expertise constitutes a major im-
pediment to the process. This is due to the sheer amount of
data (Li et al. 2020; Tamašauskaitė and Groth 2023), which
makes manual knowledge graph creation labour-intensive
(Ruan et al. 2016), expensive (Ji et al. 2022) and prone to
human errors (Kejriwal 2019). At the same time, there is
a shortage of relevant experts in many domains (Abu-Salih
2021). The growing number of applications of knowledge
graphs in different fields makes it especially important to
automate the building steps of knowledge graphs (Ji et al.
2022). In particular, knowledge graph creation from large-
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scale unstructured content should exhibit a high degree of
automation (Kejriwal 2019).

A promising strategy for addressing the challenges in-
volved in knowledge graph creation is generative artificial
intelligence (AI) (Bi et al. 2023; Zhu et al. 2023). Generative
AI methods can leverage probabilistic large language mod-
els (LLMs) – language models that have been pre-trained on
substantial amounts of textual data – in such a way that ma-
chines become able to understand and generate natural lan-
guage (and other modalities) based on custom input (Yang
2023). This capability can be used for various knowledge
graph generation tasks (Yang 2023; Zhu et al. 2023), such as
entity and relation extraction and question answering (Zhu
et al. 2023).

Despite the high expectations for generative AI, there is
still much to learn about how it can be used to build knowl-
edge graphs (Zhu et al. 2023). While LLM-based genera-
tive AI techniques (such as ChatGPT) have been thoroughly
studied and employed in many fields (Yang 2023), there
has not been much research on their application for build-
ing knowledge graphs (Zhu et al. 2023), let alone enter-
prise knowledge graphs. Instead, in many instances, domain-
specific knowledge graphs have been built using more tra-
ditional methodologies (Dong, Yu, and Li 2021; Ruan et al.
2016; Song et al. 2019). In addition, numerous existing stud-
ies have focused on open data sets (e.g., Wikidata) based
on information generally available on the internet (Chaudhri
et al. 2022; Google 2023; Li et al. 2020; schema.org 2022).

Given the relevance of the topic in both research and
industry, this work investigated the potential of generative
AI techniques employing probabilistic language models for
the creation of Enterprise Knowledge Graphs (EGKs). To
achieve this research objective, we adopted the Design Sci-
ence Research (DSR) strategy (Vaishnavi, Kuechler, and
Petter 2004), as it is adequate for the creation of novel arte-
facts that are relevant in both research and the real world.

An Enterprise Knowledge Graph Engineering
Process

This section describes the findings of the first DSR phase,
the Awareness of Problem, which derived from a literature
review and experts’ interviews. Interviews have been con-
ducted with two senior knowledge engineers, both work-
ing in tech companies that build knowledge graphs for other
companies; one company is based in Germany, and the other
is based in California. Interviewee 1 and the company make
extensive use of the Semantic Web Stack. Interviewee 2 and
the company use Object-Role modeling (OMR) to concep-
tualize enterprise knowledge. Insights from the two knowl-
edge engineers were synthesized and extended with exist-
ing literature. The result is a top-down process for building
ontologies and knowledge graphs in company settings. The
process is detailed below.

1. Formulate informal competency questions.
Informal competency questions are expressed in natu-
ral language and place demands on an underlying on-
tology. An ontology must be able to answer these ques-
tions (Grüninger and Fox 1995). The Interviewees em-

phasize that there is no standardized set of questions that
fits every scenario or domain. Good informal competency
questions should be defined in a stratified manner. This
means that higher-level questions require the solution of
lower-level ones (Grüninger and Fox 1995).

2. Construct the ontology schema.
Once the domain and scope of the knowledge engineer-
ing endeavor have been defined, the interviewees prop-
agate a model-first approach when it comes to enter-
prise knowledge graph creation. This top-down approach
– where a (visual) ontology schema is built as one of
the first steps – is also outlined by Li et al. (2020) and
Tamašauskaitė and Groth (2023). When no existing on-
tology can be reused, a new one needs to be constructed.
This can be done by enumerating important terms and
relationships in the given domain. These terms are then
classified into classes, properties, and facets (Noy and
McGuinness 2001).

3. Extract data and knowledge and integrate it into the
knowledge graph.
In the literature (Ji et al. 2022; Li et al. 2020;
Tamašauskaitė and Groth 2023), knowledge extraction is
described as the extraction of entities, attributes and re-
lationships from data sources. As soon as the required
data sources are identified, knowledge can be extracted
from them according to the previously constructed on-
tology schema. This allows to enrich the initial ontol-
ogy schema. In a procedure called knowledge fusion or
integration, a mapping is performed between the ontol-
ogy and the extracted knowledge (Tamašauskaitė and
Groth 2023). The knowledge is integrated by aligning
the extracted entities, attributes and relationships to the
classes and properties defined in the ontology schema
(Li et al. 2020). As a result of entity and relation extrac-
tion (and knowledge processing), it is possible to con-
struct RDF triples and build a knowledge graph. The
underlying data can be stored in various ways, includ-
ing relational databases, triple stores and graph databases
(Tamašauskaitė and Groth 2023).

4. Validate the mapping of the data to the ontology.
Both interviewees and Li et al. (2020) and Tamašauskaitė
and Groth (2023) agree that it is important to continu-
ously validate the alignment of the extracted data with
the ontology schema. This can be done based on man-
ual sampling (Li et al. 2020) or in an automated way by
taking advantage of the structure and constraints defined
in the ontology schema (Tamašauskaitė and Groth 2023).
Interviewee 1 recommends the use of SHACL for auto-
mated validation of triples in RDF.

5. Create an instance of a knowledge graph.
Creating an instance refers to populating the structure de-
fined in the ontology with actual transaction data (Noy
and McGuinness 2001). To populate a knowledge graph,
interviewee 1 and his company usually retrieve RDF
data (instances) from structured sources. This is done
by converting formats like JSON, XML, CSV and re-
lational databases to RDF triples. Instances can be dis-
played visually, allowing navigation through the graph



structure and the discovery of related knowledge. How-
ever, in order to enable effective use of the knowledge
graph, querying is required (Tamašauskaitė and Groth
2023). The standard query language for RDF graphs is
SPARQL.

6. Maintain and extend the knowledge graph.
As knowledge constantly changes and evolves, knowl-
edge graphs are never complete and need to be continu-
ously updated. The aspect of maintaining a graph relates
to integrating new data from sources (Tamašauskaitė and
Groth 2023), while knowledge completion can be per-
formed through deductive reasoning to extend the knowl-
edge graph. Deductive reasoning enables the establish-
ment of new relations among given entities or to derive
new entities based on existing knowledge (Ji et al. 2022;
Tamašauskaitė and Groth 2023). A language that can be
used to define rules for deductive reasoning is SWRL.
With SWRL, one can create a chain of reasoning where
the output of one rule becomes the input for the next rule
(Horrocks et al. 2004).

The LLM-aided Enterprise Knowledge Graph
Engineering Process

This section presents the results of the second DSR phase,
the Suggestion Phase. Specifically, in this phase, we ad-
dressed the concern of how probabilistic language models
can support the creation of enterprise knowledge graphs.
Thus, we built from the previously presented six steps.

The proposed LLM-aided EKG engineering process is il-
lustrated in Figure 1. For each process step, the figure depicts
a suggestion of what a large language model can contribute.
The process steps are detailed in the following sub-sections.

LLM to Generate Informal Competency Questions
To ensure that the LLM is aware of what is meant by
informal competency questions, sources such as Noy and
McGuinness (2001) can be cited. The language model
should also be fed with a textual description of the area of
knowledge for which the questions need to be formulated,
including information about existing concepts, their prop-
erties and relationships. Once the LLM has been fed with
informal competency questions and the given domain, it can
be asked to generate corresponding competency questions. It
is suggested to encourage diverse questions by varying the
prompts. Examples of such prompts could be:
• What are the key questions someone might have about

[topic, concept, property, relationship]?
• Generate competency questions that cover a range of

complexity, from basic facts to specific nuances.
The LLM should then answer with a list of questions. The
model can be provided with feedback on the generated ques-
tions to improve them iteratively.

LLM to Generate an Ontology Schema
LLMs can be used to generate an enterprise knowledge
graph schema by extracting the important terms, their char-
acteristics and relations within a knowledge area. In the first

step, what is expected from an ontology schema should be
explained to the model. The LLM should then be presented
with input data from which the schema needs to be con-
structed. These might be textual descriptions that include
mentions of the classes, properties, relationships and facets
prevalent in the knowledge area. Prompt engineering should
be applied to formulate varying prompts that evoke different
answers from the LLM. Examples of such prompts are as
follows:

• Based on the provided input data, extract an ontology
schema by retrieving important terms/classes, proper-
ties and relationships. Create a table with the following
columns: subject, object, predicate.

• For each class, list its properties and the properties’ facets
in a table with the columns class, property and facet.

After receiving responses, the model can be guided with
feedback on the results. Follow-up prompts can be used to
ask about the structure of the ontology. Examples might be:

• What is the relationship between [class A] and [class B]?

• Are there any constraints to [property C]?

LLM to Extract Data and Convert them to RDF
LLMs can assist in entity extraction, resolution, and format
conversion. The list of entities from the previous step might
include some terms that refer to the same thing. The LLM
can be guided to recognize this.

• As [class D] and [class E] are the same thing, call them
both [class D].

In order to obtain results in a structured format, input data
can be provided to the LLM along with an explicit request
to format them in RDF(S) or OWL.

• Based on the ontology schema and description provided,
convert the identified classes, properties, relationships
and facets to a description in OWL.

To convert data to RDF, the data source can be provided in
its structured origin format and the output can be requested
in Turtle syntax (Beckett et al. 2014). It shall be assessed
whether all the classes and properties from the source have
been classified correctly in the generated RDF code.

LLMs can be used to generate SHACL shapes to express
conditions and restrictions on RDF graphs. This can be done
from natural language input or based on an existing RDF(S)
representation. A Turtle code can be used as a basis for
the generation of SHACL constraints. These can be derived
from the ontology schema (facets) but also from instances.
For example, an LLM should be able to identify a date for-
mat from an instance and provide the right data type. When
a generated SHACL shape is incomplete or wrong, it can be
refined by means of prompts.

• Add a property [property D] with data type Integer.

• Change the SHACL shape so that [term A] is a class
which may have several [class B].

• Set the minCount of the property [property A] to 2.



Figure 1: The LLM-aided Enterprise Knowledge Graph Engineering Process.

LLM to Generate Queries in SPARQL
For an LLM to be able to create SPARQL queries, it needs
to be aware of the ontology schema and the respective in-
stances. Then it can be asked to transform a natural language
query into SPARQL.
• Write a SPARQL query that extracts the people who were

born in 1990 from the above dataset.
• Write a SPARQL query that extracts all the organisatio-

nUnits without a departmentHead that are located in lo-
cationCountry Switzerland.

• Write a SPARQL query that summarises the total revenue
generated in 2022.

The resulting queries might lack some conditions or there
might be misinterpretations.This can be corrected by asking
the LLM to change certain elements of the SPARQL query.

LLM to Generate Deductive Rules in SWRL
In order to generate deductive rules to infer new relation-
ships or entities based on the existing knowledge graph, the
LLM must be aware of the ontology and instances. Next, the
design of deductive rules can be guided by asking the LLM
to take on a specific role.
• Imagine that you are a manager who needs to make im-

portant decisions based on the knowledge graph. Think
about additional insights that could be gained from the
provided data set.

For a formal representation of the resulting rules, SWRL
code should be generated. The LLM can propose its own
rules or it can be asked to represent customized rules that
involve instances from the input data:
• Suggest some deductive rules for the above dataset and

define them in SWRL.
• Write a SWRL rule to infer a new Boolean property high-

Priority for instances where the dueDate is in less than
five days.

One can always use follow-up prompts to refine the rules to
include additional conditions or to change certain parts.

Use of the LLM-aided Enterprise Knowledge
Graph Engineering Process

In this section, we describe the DSR phase implementa-
tion, where LLMs have been used in each of the six pro-
cess steps. For this, five LLMs were considered: ChatGPT
3.5/4 (OpenAI), Bard (Google), Claude 2 (Anthropic) and
Code LLaMA 34b (Meta). These have been selected for the
following reasons: they are easy to access (through a user in-
terface), are usable at either no cost or at a reasonable price,
are the latest LLMs available in the market, which are known
to best performant on applications like translation, question
answering, and program synthesis.

The open data set on summer Olympic medals (Agrawal
2019) is used as input. The data set consists of a brief textual
description as well as instances in a CSV file. The models
are fed with prompts and data that correspond to the respec-
tive task.

LLM to Generate Informal Competency Questions
The models are asked to generate informal competency
questions about the Summer Olympic Games knowledge do-
main. This is done by submitting the above-mentioned tex-
tual description along with a suitable request to the model:

• Provide some competency questions for the knowledge
domain of the Summer Olympic Games provided. Before
doing so, think about the questions one might have about
the domain.

One can ask for more specific information on a specific topic
with a prompt like this:

• What are questions one might have about medals?



LLM to Generate an Ontology Schema
As the previous conversation about informal competency
questions continues, the models already have contextual
awareness, and the description of the Olympic Games do-
main can be easily recalled.
• Build an ontology schema for the Summer Olympic

Games knowledge domain from above. Proceed by re-
trieving important terms/classes, properties, relationships
and constraints (facets).

Further, the models can be asked to list the results in a well-
readable way:
• Create a table with the columns subject, object, predicate.

With another prompt, the properties and facets per class can
be listed:
• For each class, list its properties and the properties’ facets

in a table with the columns class, property, facet.
Finally, specific questions about the structure of the ontology
can be asked:
• What is the relationship between Event and Discipline?

The procedure can be repeated by providing a structured in-
put with instances to the model. For instance, some rows of
the Summer Olympics CSV file can be provided along with
the following prompt:
• Below, I provide you with some instances of the domain.

Based on this, provide an ontology schema.

LLM to Extract Data and Convert them to RDF
By continuing the conversation from before, it is possible
to build on the Summer Olympic Games domain knowledge
already established by the LLMs. Although entities have al-
ready been extracted before, the LLMs are again asked for a
list of them:
• Extract all the entities in the Olympic Summer Games

domain. Do not include examples, only the entity names.
Further prompts may be used to consolidate similar entities
or to change or add certain entities. Considering the out-
comes of ontology schema creation and entity resolution, a
comprehensive list of classes, relationships, properties and
facets should now be available. This structural ontology in-
formation can be converted to RDF(S) format in order build
a knowledge graph. The following prompt is used:
• Based on what you know about the Olympic Summer

Games ontology schema, convert the identified classes,
properties, relationships and facets to a description in
RDF(S) format using OWL.

In addition to the structural data, instances are converted to
RDF by supplying the model with samples in CSV format.
Precise instructions are given to the LLMs:
• In the following, you are provided with some instances

of the Summer Olympic Games data set. This set corre-
sponds to the ontology schema of the Summer Olympic
Games built above. Proceed as instructed: 1. Organise
and display the data as a table. 2. Transform the instances
to RDF while using Turtle syntax. Consider the underly-
ing Summer Olympic Games ontology schema.

LLM to Generate Constraints in SHACL
In this LLM application scenario, the models are used to
generate SHACL shapes for validation. As input, the ontol-
ogy schema and the RDF/Turtle representations of instances
from before are used.

• Based on the ontology schema about the Summer
Olympic Games and the instances, generate some
SHACL shapes that include constraints for classes or
properties.

The information that there are only three types of medals
can be encoded in a SHACL shape by means of a natural
language request:

• There are only three types of medals: gold, silver and
bronze. Consider this in a SHACL shape.

There are many more options for restrictions in the Olympic
Games domain. For example, it can be declared that a sport
encompasses multiple disciplines, including several events.

• Generate SHACL shapes denoting that a sport may en-
compass multiple disciplines. Each discipline can in-
clude several events.

LLM to Generate Queries in SPARQL
On the basis of the generated ontology schema and some
instances of the Olympic Summer Games data set, search
queries are provided in natural language. The LLMs are then
prompted to transform these queries to SPARQL.

• In the following, you are provided with some instances
of the Summer Olympic Games data set. This set corre-
sponds to the ontology schema of the Summer Olympic
Games built above. Proceed as instructed: 1. Organise
and display the data as a table. 2. Transform the instances
to RDF while using Turtle syntax. Consider the underly-
ing Summer Olympic Games ontology schema.

As a result, the LLMs should now have generated a Turtle
representation of the instances. This is a good foundation for
generating queries. The following instructions are given:

• Based on this Turtle representation of the Olympic Sum-
mer Games instances, generate a SPARQL query that ex-
tracts all the women who have won a gold medal.

• Generate a SPARQL query based on the above data set
that retrieves all athletes who have won multiple medals.

• The athletes come from different countries. Generate a
SPARQL query that lists the countries in descending or-
der based on the number of medals won by their athletes.

LLM to Generate Deductive Rules in SWRL
The final application scenario addresses the generation of
deductive rules for reasoning and inference. First, the LLMs
are asked to provide ideas for such rules based on the ontol-
ogy schema and available instances.

• Imagine that you are a manager who needs to make im-
portant decisions based on the Olympic Summer Games
ontology. Think about additional insights that could be
gained from the provided data set.



For a formal representation of these insights, the SWRL lan-
guage is used.

• Represent some of the suggested insights as deductive
rules in SWRL. For each generated SWRL rule, add a
description of what it does. Remember to consider the
provided dataset of the Olympic Summer Games.

SWRL is also able to build so-called chains of reasoning.
These are constructs consisting of multiple rules, where the
output of one rule serves as input for the next. Such a chain
of reasoning can be evoked with a prompt like this:

• Write a SWRL rule to identify all athletes that have par-
ticipated in multiple events.

Evaluation of the LLM-aided Knowledge
Graph Engineering Process

To assess the usefulness of the LLM-aided knowledge graph
engineering process in practice, the evaluation was con-
ducted on a real data set from an anonymous company
(Company X). The data set consists of a textual description
and a corresponding CSV file with multiple instances. The
latter were anonymized.

ChatGPT 3.5 and ChatGPT 4 achieved the best imple-
mentation results. As they both stem from the same model
family, only ChatGPT 4 is considered in the evaluation. In
addition, Claude 2 is taken into account. The two models
are applied to the same six steps while utilizing the domain-
specific input data. The correctness of the generated results
is validated in four ways:

1. Manual validation for natural language text.
2. PlantUML (Ezoic 2023) for visualising ontology

schemas.
3. RDF grapher (web tool) for validating RDF code.
4. AllegroGraph (Franz 2023) for implementing and query-

ing RDF graphs.

The results of the evaluation are listed below.

• LLM to generate informal competency questions. The
competency questions generated by the LLMs were well
tailored to the business area of Company X. An exam-
ple from GPT 4 is provided in Figure 2. Lesson learned:
LLMs are well-suited for the formulation of informal
competency questions. The generated competency ques-
tions exhibited a high degree of relevance with respect
to the given domain. Understandably, in cases where not
much information was available from the given knowl-
edge area, the competency questions became less rele-
vant.

• LLM to generate an ontology schema. Both LLMs
were capable of extracting important terms from the
ontology and visualizing them in PlantUML. Figure 3
provides Claude 2’s result. Lesson learned: The LLMs
demonstrated good performance with some shortcom-
ings. It was observed that the output improved with addi-
tional knowledge provided. While the initial extraction
was done from natural language text, the concepts of
the ontology were refined by both LLMs after providing

Figure 2: Competency questions generated by GPT 4.

Figure 3: PlantUML ontology schema generated by Claude
2.

RDF data. However, none of the language models man-
aged to extract all the properties from the provided data
(textual description and instances). From the real data set,
GPT 4 missed two properties and Claude 2 even more.
This finding underlines the need to thoroughly inspect
the generated ontology schema manually.

• LLM to extract data and convert them to RDF. Claude
2 and GPT 4 accurately extracted structural ontology data
and instances and transform them to RDF/Turtle while
maintaining ontology alignment. The RDF code was suc-
cessfully validated by RDF grapher (see excerpt in Fig-



Figure 4: OWL ontology schema generated by GPT 4 and
visualised in RDF grapher.

Figure 5: SPARQL update query generated by Claude 2 and
executed in AllegroGraph.

ure 4) and imported into the knowledge graph platform
AllegroGraph. Lesson learned: Promising results were
achieved in the experiments that applied LLMs for gen-
erating RDF code. While the same properties as before
were missing for both models, GPT 4 did not initially de-
fine any relationships among the classes. They were only
added after being instructed to do so, which required an
additional prompt. Afterward, the ontology was success-
fully validated by RDF grapher. With Claude 2, the rela-
tions among the classes were well-defined from the be-
ginning. However, the prefix lines required some manual
syntax adjustments. After these changes, the schema was
also validated correctly. Both ontology schemas could
now be imported into AllegroGraph without further is-

Figure 6: SWRL rule generated by GPT 4.

sues. The integration of a small number of instances into
the knowledge graph progressed relatively well. Claude
2 and GPT 4 were both able to transform three individ-
ual CSV instances of the real data set to turtle syntax
while maintaining alignment with the underlying ontol-
ogy schema. While no adaptations were necessary for
GPT 4, the code generated by Claude 2 required some
small changes. Finally, the code from both LLMs was
successfully validated and integrated into AllegroGraph.
The learning that can be drawn from this approach is that
it does not work for large numbers of instances. Both
LLMs refused to process prompts or provide complete
results when confronted with more than three instances
of the evaluation set. This makes it almost impossible to
integrate a larger data sample into the knowledge graph
using GPT 4 or Claude 2.

• LLM to generate constraints in SHACL. The two
LLMs generated SHACL shapes that were well-suited
for the given ontology. The shapes were validated in RDF
grapher and integrated into AllegroGraph to demonstrate
their correctness. Lesson learned: The LLMs proved to
be helpful in generating SHACL shapes. GPT 4 returned
an extensive set of constraints tailored to the provided
instances from the real-world data. The shapes included
restrictions to specific datatypes or classes, often accom-
panied by minimum conditions. The SHACL shapes sug-
gested by Claude 2 were less numerous, but similarly
well defined. Based on the instance data, in many cases,
the correct data types were selected, such as a date or
an enumeration. Nevertheless, some constraints were ini-
tially wrong or incomplete. However, these issues were
quickly resolved with corresponding prompts and the
SHACL shapes were successfully imported into Allegro-
Graph.

• LLM to generate queries in SPARQL. Although some
of the generated SPARQL queries required minor cor-
rections, they could be successfully executed against the
instances in AllegroGraph. The results were observed to
be correct. This also applies to update queries, as Fig-
ure 5 demonstrates. Lesson learned: Great potential was
identified in the LLM-supported generation of SPARQL



queries. A prerequisite for this to work is the awareness
of an LLM with the underlying ontology schema. In the
experiments, the generated queries were executed against
the knowledge graph implemented in AllegroGraph. This
allowed verifying their validity based on the query re-
sults, which included actual instances. Apart from some
erroneous namespaces or prefixes and repeated requests
to the LLMs to recall the ontology structure, the gener-
ated queries were processed without any problems and
their outputs were correct. Notably, these queries in-
cluded information needs across multiple classes and
their properties. GPT 4 and Claude 2 also showcased
their ability to generate SPARQL update queries. Specif-
ically, they succeeded in writing a query that changed a
property value of an existing instance. Despite these pos-
itive results, it is important to emphasise that the person
writing the prompts must be well acquainted with the
knowledge domain. While, it helped to provide the ac-
tual names of classes and properties, there was no need
to cumbersomely pre-build the query structure in natu-
ral language. It was sufficient to simply name the terms
used in the ontology. Case sensitivity was not required.
For example, the following prompt was provided:

– Extract all bookings that were paid for in cash.

This prompt resulted in a valid SPARQL query, incorpo-
rating the two classes Booking and PaymentMethod and
the hasType property for the latter.

• LLM to generate deductive rules in SWRL. The LLMs
proved useful in suggesting and generating SWRL rules
concerning the real-world data set. An example is il-
lustrated in Figure 6. Lesson learned: Both GPT 4 and
Claude 2 showed to be valid in suggesting and formulat-
ing deductive rules. With respect to the knowledge do-
main, both language models gave relevant insights that
were gained from the existing instances. The rules were
represented in SWRL and were aligned with the ontol-
ogy. As AllegroGraph does not support the execution of
SWRL rules, the LLMs were asked to transform the set of
rules into SPARQL queries. Next, the resulting SPARQL
queries were successfully executed in AllegroGraph. The
queries included rather extensive clauses such as aliases,
counting operations, filters and grouping.

Discussion
The capability of LLMs to generate informal competency
questions and enterprise knowledge graphs can be leveraged
by practitioners to ensure that they align with the business
area and cover all relevant topics. By employing LLMs for
extracting and converting (even unstructured) data to RDF,
the manual effort is expected to be reduced significantly.
The need for specialist expertise is also assumed to decrease.
However, the experiments underlined the importance of hu-
man supervision of the output generated. In addition, lim-
itations were observed when processing larger numbers of
instances.

LLMs can also contribute to enforcing data quality
and consistency within a knowledge graph by generating

SHACL shapes. In practice, with a large number of prop-
erties, this is a rather tedious task that could be easily auto-
mated based on the nature of the instances provided.

Another important aspect in terms of practical useful-
ness is the LLM-supported query generation. This approach
enables business users without knowledge of the SPARQL
query language to fulfill their information needs. While fa-
miliarity with the ontology schema is still required, LLMs
can help to bridge the knowledge gap. The same applies to
the formulation of deductive rules. While LLMs can provide
inspiration to decision-makers to infer new knowledge, they
can also represent these insights in an executable, structured
format such as SWRL. As a result, business-relevant deci-
sions can be made more quickly.

Conclusion and Future Work
The study presents an LLM-aided enterprise knowledge
graph engineering process. The latter integrates the use of
LLMs into phases of enterprise knowledge engineering. The
knowledge engineering process was derived by combining
findings from primary and secondary data, where the for-
mer were collected by interviewing senior knowledge en-
gineers of tech companies. The process has been imple-
mented using current large language models available in the
market and accessible via user interfaces. These were used
for evaluation purposes along with a real dataset provided
by a large Swiss company. The two language models GPT
4 and Claude 2 achieve remarkable results in generating
code in W3C recommendations such as RDF(S), SHACL,
OWL, SPARQL and SWRL. However, their performance
varies depending on the quality and amount of input pro-
vided. In addition, the generated output requires manual val-
idation, which is left to the knowledge engineer. Neverthe-
less, if these obstacles can be overcome, LLMs are an aid to
democratise the creation of knowledge graphs, which might
become a practice for a domain or business experts.

A valid follow-up work regards the evaluation of the pro-
posed process in comparison to a human-driven enterprise
knowledge graph engineering process. An additional future
work worth mentioning concerns fine-tuning experiments on
LLMs to add expertise about enterprise knowledge graph en-
gineering projects, which could result in better performance
than generic LLMs.
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